Define, Evaluate, and Improve Task-Oriented Cognitive Capabilities for Instruction Generation Models

Lingjun Zhao

Khanh Nguyen

Hal Daumé III

Motivation: More human-like cognition leads to better communication

- By aligning Al agents with humans: how to perceive and describe the world

The evaluation step is difficult for black-box models

Problem: How to generate navigation instructions for people to follow

- Instructions generated by vanilla instruction generation (speaker) models fail to communicate well with humans
- How to generate better instructions by reasoning pragmatically?
- How to evaluate cognitive capabilities of speaker models?

Contributions

- A new scheme for evaluating task-oriented cognitive capabilities in instruction generation models
- An 11% success rate improvement in guiding real humans in photorealistic environment, by equipping vanilla speakers with theory-of-mind capabilities
- A call to construct better theory-of-mind models for improving the instruction generation models

Distinguishing two capabilities: ToM and Search

- Humans are bounded pragmatic speakers (Sanborn and Chater 2016)
- Two cognitive capabilities:
* Search: evaluate whether can generate relevant instructions
* Theory-of-Mind: evaluate whether can simulate how human interprets the instructions
Repeat N times
(i) Generate candidate (search capability)

$$
u_{i} \sim S_{\text {base }}\left(\cdot \mid e^{*}\right)
$$

(ii) Evaluate candidate (pragmatic capability) score $\left(u_{i}\right)=L_{\text {том }}\left(e^{*} \mid u_{i}\right)$
Return $\operatorname{argmax}_{u \in D} \operatorname{score}(u), D=\left\{u_{1}, \ldots, u_{N}\right\}$
(b)

Recommendation:
(c) - Large $\Delta_{\text {search }}$, small $\Delta_{\text {pragmaic }} \Rightarrow$ improve inference algorithm

- Large $\Delta_{\text {pragmatic }}$, small $\Delta_{\text {search }} \Rightarrow$ enhance model of listener

Bounded Pragmatic Speaker: Incorporate bounded Theory-of-mind into instruction generation

- Base Speaker: generates a set of relevant candidate instructions for a path
- Theory-of-mind Listener:
* RL agent(s) simulating how human would follow the instructions
* Select the instruction with simulated path most similar to the intended path
- Human Listener: follow the selected instruction in the environment

Pragmatic capability (theory-of-mind evaluation) is more deficient than Search capability (candidate generation)

Performance of the base speakers and their human-augmented versions

Experimental Settings

- Speaker model dataset (reverse Matterport Room2Room dataset):
Train:14k, Dev: 4k, Test: 1k

Evaluation: measure human's success in following generated instructions

* Give instructions to real humans
* Measure similarity between human-generated and intended paths:

Normalized dynamic time warping (NDTW \uparrow)

- Models:
* Finetuned GPT-2
* EncDec-LSTM
* EncDec-Transformer
* Pragmatic Speakers

Using ensemble followers as theory-of-mind model can improve base speakers significantly to communicate with humans

ToM listener $L_{\text {ToM }}$	Base speaker $S_{\text {base }}$		
	Fine-tuned GPT-2	EncDec-LSTM	EncDec-Transformer
None	37.7 (0.0)	45.3 (0.0)	49.4 (0.0)
Single VLN-BERT (Majumdar et al., 2020)	38.9 (1.2)	39.8 (5.5$)$	46.2 (3.2)
Ensemble of 10 EnvDrop-CLIP (Shen et al., 2022)	37.8 ($\mathbf{\Delta 0 . 1)}^{\text {(}}$	$53.1{ }^{\dagger}{ }^{(14.8)}$	$57.3^{\dagger}{ }_{(\triangle 1.9)}$
Ensemble of 10 VLN $đ$ BERT (Hong et al., 2021)	43.4 (5 5.7) $^{\text {a }}$	$56.4^{\ddagger}(\mathrm{\Delta} 11.1)$	54.2 (4.8)
Humans (skyline)	$72.9^{\ddagger}(\triangle 35.2)$	$76.2^{\ddagger}(\triangle 30.9)$	$75.2^{\ddagger}(\Delta 25.8)$

Performance of the speakers (NDTW) when equipped with different Theory-of-mind listener models

Shrink the gap with humans by 36\%!

Takeaways

- Using ensemble followers as theory-of-mind model can improve base speakers trained with MLE objective
- Better task-oriented theory-of-mind model is needed to bridge the communication gap between AI and humans
- To develop safe and helpful AI requires quantifying the gaps between an Al agent and human

