Define, Evaluate, and Improve Task-Oriented Cognitive Capabilities for Instruction Generation Models

Lingjun Zhao

Khanh Nguyen

Hal Daumé III

Motivation: More human-like cognition leads to better communication

• By aligning AI agents with humans: how to perceive and describe the world

Evaluate whether AI agents communicate like humans

Make them communicate **more** like humans

The evaluation step is difficult for black-box models

Problem: How to generate navigation instructions for people to follow

- Instructions generated by vanilla instruction generation (speaker) models fail to communicate well with humans
- How to generate better instructions by reasoning pragmatically?
- How to evaluate cognitive capabilities of speaker models?

Walk past the bed and wait by the two chairs.

Hmm... which two **chairs** did you mean?

Contributions

- A new scheme for evaluating task-oriented cognitive capabilities in instruction generation models
- An 11% success rate improvement in guiding real humans in photorealistic environment, by equipping vanilla speakers with theory-of-mind capabilities
- A call to construct better theory-of-mind models for improving the instruction generation models

Distinguishing two capabilities: ToM and Search

- Humans are bounded pragmatic speakers (Sanborn and Chater 2016)
- Two cognitive capabilities:

*** Search:** evaluate whether can generate relevant instructions

*** Theory-of-Mind:** evaluate whether can simulate how human interprets the instructions

• Large $\Delta_{\text{pragmatic}}$, small $\Delta_{\text{search}} \Rightarrow$ enhance model of listener

Bounded Pragmatic Speaker: Incorporate bounded Theory-of-mind into instruction generation

- **Base Speaker:** generates a set of relevant candidate instructions for a path
- Theory-of-mind Listener:

* RL agent(s) simulating how human would follow the instructions * Select the instruction with simulated path most similar to the intended path

• **Human Listener**: follow the selected instruction in the environment

Pragmatic capability (theory-of-mind evaluation) is more deficient than Search capability (candidate generation)

Performance of the base speakers and their human-augmented versions

Experimental Settings

Speaker model dataset (reverse Matterport **Room2Room dataset):**

Train:14k, Dev: 4k, Test: 1k

- **Evaluation:** measure human's success in following generated instructions
 - * Give instructions to real humans
 - * Measure similarity between human-generated and intended paths:

Normalized dynamic time warping (**NDTW** 1)

- Models:
 - ***** Finetuned GPT-2
 - * EncDec-LSTM
 - * EncDec-Transformer
 - ***** Pragmatic Speakers

Using ensemble followers as theory-of-mind model can improve base speakers significantly to communicate with humans

ToM listener L_{ToM}

None

Single VLN-BERT (Majumdar et al., 2020) Ensemble of 10 EnvDrop-CLIP (Shen et al., 2022) Ensemble of 10 VLN \bigcirc BERT (Hong et al., 2021) Humans (skyline)

Performance of the speakers (NDTW) when equipped with different Theory-of-mind listener models

Base speaker S_{base}		
Fine-tuned GPT-2	EncDec-LSTM	EncDec-Transformer
37.7 (▲ 0.0)	45.3 (▲ 0.0)	49.4 (A 0.0)
38.9 (1 .2)	39.8 (▼ 5.5)	46.2 (▼ 3.2)
37.8 (A 0.1)	53.1 [†] (A 7.8)	57.3 [†] (▲ 7.9)
43.4 (▲ 5.7)	56.4 [‡] (▲ 11.1)	54.2 (▲ 4.8)
72.9 [‡] (▲ 35.2)	76.2 [‡] (a 30.9)	75.2 [‡] (▲ 25.8)

Shrink the gap with humans by 36%!

Takeaways

- MLE objective
- between AI and humans

• Using ensemble followers as theory-of-mind model can **improve** base speakers trained with

• Better task-oriented **theory-of-mind model** is needed to bridge the communication gap

• To develop safe and helpful AI requires quantifying the gaps between an AI agent and human

